A modified multivariate spectral gradient algorithm for solving absolute value equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations

In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...

متن کامل

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

A hybrid algorithm for solving the absolute value equation

We propose a hybrid algorithm for solving the NP-hard absolute value equation (AVE): Ax−|x| = b, where A is an n×n square matrix. The algorithm makes no assumptions on the AVE other than solvability and consists of solving iteratively a linear system of equations followed by a linear program. The algorithm was tested on 100 consecutively generated random solvable instances of the AVE with n =50...

متن کامل

A numerical algorithm for solving a class of matrix equations

In this paper, we present a numerical algorithm for solving matrix equations $(A otimes B)X = F$  by extending the well-known Gaussian elimination for $Ax = b$. The proposed algorithm has a high computational efficiency. Two numerical examples are provided to show the effectiveness of the proposed algorithm.

متن کامل

Two Cscs-based Iteration Methods for Solving Absolute Value Equations∗

Recently, two families of HSS-based iteration methods are constructed for solving the system of absolute value equations (AVEs), which is a class of non-differentiable NP-hard problems. In this study, we establish the Picard-CSCS iteration method and the nonlinear CSCS-like iteration method for AVEs involving the Toeplitz matrix. Then, we analyze the convergence of the Picard-CSCS iteration met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2021

ISSN: 0893-9659

DOI: 10.1016/j.aml.2021.107461